Chapter 21

Procedure Specifications in
TLA+

21.1 Real Time Theorems

For some of the definitions in the modules specifying the procedures we need
to use statements about the mathematical behaviour of functions. We do not
intend to go deeply into this. We need some analysis in TLA+, namely the
MeanValueTheorem (Figure 21.1). This is a straightforward task as illustrated
in [Lam93b]. We apply this to the altitude-time function; accordingly, we need
the help of module RealTime from [AL94].

321

322 Procedure Specifications in TLA+

| module RealTimeTheorems

DECLARATIONS
extends Naturals
extends RealTime
CONSTANTS lower_bound, upper_bound
VARIABLES f,t

ASSUMPTIONS
MeanValueTheorem =
A ‘;—’; < 0 in [lower_bound, upper _bound)|
A f = upper_bound
(A O(f = lower_bound))
= Vz € [lower_bound, upper_bound] : O(f =

z)

DEFINITIONS
RTSpec = MeanValueTheorem

Figure 21.1: Module RealTimeTheorems

21.2 Procedures 323

- ~
‘ extended by module Landing_Defs

@ instantiated by ‘

module Landing_Axioms

I ‘ module Landing_Norms

>

module RealTimeTheorems

module lﬂndmg_Specs

Figure 21.2: Hierarchy of Landing Procedures and Real-Time Specifications

21.2 Procedures

21.2.1 Specification of Landing Procedures

For the specification of landing procedures we use a collection of hierarchical
modules, arranged as in Figure 21.2. Abbreviations used in the are explained in
Appendix C.

As in Section 16.2, we first define a module containing the basic definitions
(Module Landing-Defs in Figure 21.3). These definitions concern the parameters
Decision Height (DH), Minimum Decision Altitude (MDA) and Touch Down
Zone Elevation (TDZE) which are important during the landing phase. Predi-
cates are also defined which explain several states involving altitude.

On a higher level, in Module Landing_Axioms we formulate axioms covering
several aspects of the landing phase. To avoid cluttering up the module with
too much mathematics, we state the assumption Suitable_Azioms. This should
not affect the quality of the specification, or of the proof. The mathematics we
assume is trivial enough to be classified as secure knowledge, and it is possible
to handle these axioms formally correctly, as we have noted above regarding the
Mean Value Theorem. The module includes definitions from Landing_Defs and
RealTimeTheorems. Axioms are derived from official aviation literature (e.g.,
[U.Sb, U.Sa]) and expert knowledge (from ourselves and other private and com-
mercial pilots). They define general procedures which are always valid, e.g.:

o Unique_Approach-Type_Rule: An approach to landing is either a Instrument
Landing System (ILS) approach or a Non-Precision (NP) approach.

e data_inconsist(x,y): Data used during the landing phase is defined to be

324 Procedure Specifications in TLA+

| module Landing_Defs

DECLARATIONS
CONSTANTS DH, MDA, TDZE
VARIABLES alt

DEFINITIONS
below DH = (alt < DH)

below_ MDA = (alt < MDA)
at_MDA = (alt = MDA)
landing = (alt = TDZE)

Figure 21.3: Module Landing_Defs

inconsistent if (a) institutions or aircrafts are addressed incorrectly; or (b)
navigation aids (Navaids) used for the approach are not on the approach
plate; or (c) navigation aids appearing on the approach plate cannot be
detected during the approach to landing;

e CompleteApprPlates: The approach plates are considered to be complete
if and only if all Navaids required for an approach appear on the approach
plate for this landing.

There are also several defeasible rules in the specification of the landing pro-
cedures. These rules are defined in Module Landing_-Norms (Figures 21.5 and
21.6). Defeasible rules are rules which ought to be adhered to, but — as the proof
will show — many of them are not at some point during this incident. Selected
rules are:

e Unique_APT_Rule: An aircraft can only be cleared to land at an airport
whose area it is in;

e Landing_Criterion: An aircraft has visual contact with acceptable visibility
if either on an ILS-approach it descends below DH or on an NP-approach
it reaches or descends below MDA.

o ILS-APPR_Rule: An ILS-approach must be broken off if the aircraft is
already below DH and the visibility becomes unacceptable!.

1 This is an exact translation of [U.Sa], title 14, Code of Federal Register, Chapter 1, 91.175
(c) 3 (e) 1ii.

21.2 Procedures 325

| module Landing_Azxioms

DECLARATIONS
extends RealTimeTheorems
extends Landing_Defs
instance Landing_Specs
CONSTANTS AC, CRW, APT, This_Approach

ASSUMPTIONS
ASSUME

Suitable mathematical axioms describing the altitude function
Suitable_Azioms = desired _alt[APPR)] : position — altitude
for the APPRs described in the approach procedures

AXTIOMS
APT/ATC_Id_Rule = ((AC)near(APT) = (AC)in_area(responsible_ ATC[APT)))
Clearance_Rule = ((AC)in_landing_phase = landing_accepted(CRW))

Unique_Approach — Type_Rule = (ILS_approach(AC, APT) < —~NP_approach(AC, APT))

Acceptance_Rule = O(landing_accepted(CRW) = Olanding_accepted(CRW))

A

data_inconsist(X,Y) = (X #Y)
AttendILS—Navaids = ILS_approach(AC, APT) = navigate(appr _plate[APT], CRW)

. y € Navaids[This_Approach] &
CompleteApprPlates = Yy : da : A This_Approach = appr_plate|a]
A y € appr_plate|a]

DEFINITION

LASpec = A APT/ATC _Id_Rule
A Clearance_Rule
A Unique_Approach — Type_Rule
A Acceptance_Rule
A data_inconsist(z, y)
N AttendILS— Navaids
A CompleteApprPlates
A Suitable_Axioms

Figure 21.4: Module Landing-Azioms

326 Procedure Specifications in TLA+

o CuallAttentionToErrorRule: As soon as the crew or the air traffic controller
notices a use of inconsistent data by the other participant in a communica-
tion, he/she must question this data;

o UniqueApproachPlates: Under the assumption that only the most current
approach plates are used, two plates of the same approach may not contain
inconsistent data.

So far we have defined rules describing some of the dependencies between
state predicates in TLA+ specifications. To specify a system describing the real
world, we need more than just rules. Module Landing_Specs (figures 21.8, 21.9
and 21.10) introduces actions, safety and liveness conditions which ensure proper
functioning of the system.

Table 21.2.1 presents a list of the state predicates defined so far. They are suf-
ficient for the current analysis, although we believe additions will be necessary for
other analyses. We distinguish between three kinds of state predicates/boolean
variables:

1. performatives— speech acts whose utterance performs an action; like “promise”,
“assert”, “request”... (See [Aus75, Sea69| for further information on this
topic.)

2. environmental variables describe influences of / interactions with environ-
mental factors to the system.

3. system variables.

Performatives and environmental variables often are history variables, which re-
tain current state information for future states to use: once the value of a history
variable is set, it remains set until it is changed by some actions. To ensure this,
the changing or unchanging value of such a variable is explicitly defined in each ac-
tion. Such variables as environmental variables, however, cannot be governed by
system agents in this way: consider weather conditions. Weather conditions are
what they are and change out of control of participants in standard procedures.
For future use of this module it might be useful to add conditions taken from stan-
dard procedures concerning, for example, when a situation must be considered
dangerous. We have done this in particular actions — see Accept_landing(CRW)

or CRW _breakoff (CRW).

21.2.2 Standard Operating Procedures

Finally, we define several Standard Operating Procedures (SOPs) concerning the
ATCCs tasks (Module SOP_Specs, Figures 21.13 and 21.14). Again, to reduce
the complexity of the specification (and therefore the proof later on), we make
an assumption: we claim that destAPT is the only important information to

21.2 Procedures 327

module Landing_Norms

|

DECLARATIONS
extends RealTimeTheorems
extends Landing_Defs
instance Landing_Azioms
instance Landing_Specs
instance Naturals
CONSTANTS AC,ATC, CRW,APT, APPR, This_Approach
VARIABLES tfc, some_apt, current_alt, acceptable_deviation

DEFINITIONS
ProceduralDef1 = Quisibility_acceptable(CRW) = Owisual_contact(CRW , APT)

GeneralSafetyRule = O-endanger(CRW , tfc)
Landing_Procedures = (A (AC)near (APT)

A O(AC)in_landing_phase) = ©O(AC)lands_at(APT)

Unique_APT _Rule =
(/\ (AC)near(APT)

A cleared_to_land(ATC, CRW , some_apt’)) = (some_apt = APT)

Landing_Criterion =
A wisibility_acceptable(CRW')
AV A ILS _approach(AC, APT)
A below_DH
V A NP_approach(AC, APT)
AV at_MDA
V below_MDA

= visual_contact(CRW, APT)

Landing_Rule =

m| (landz'ng_accepted(CRW) - VvV <Olanding)

Vv Olanding_interrupt(CRW , ATC, APT)

Figure 21.5: Module Landing_Norms (Part 1)

328 Procedure Specifications in TLA+

module Landing_Norms (continued)

A ILS_approach(AC, APT)
A below_DH = OCRW _breakoff (CRW)
A O-wisibility_acceptable(CRW)

ILS— APPR_Rule =

A ILS _approach(AC, APT)

ILS—LandingRule = (/\ O-CRW _breakoff (CRW)

) = Olanding

>

ILS— AltProperty (A ILS_approach(AC, APT))

A O-CRW _breakoff (CRW)
alt is a 'monotone decreasing continuous
function of RealTime’
AN APT # destAPT
A O-distress_descl(CRW) | = =O(AC)lands_at(APT)
A O-wurgency_decl(CRW)

Normal— Progress =

CallAttentionToErrorRule =
Vz,y€e {ATC, CRW} :
N zTHy
A Attend(z, data_inconsist(Navaids[This_Approach)],

. Navaids[appr_plate[APT)))

= question(z, y, data_inconsist(Navaids| This_Approach],
Navaids[appr _plate[APT)))

AttendBrrorRule 2 4 = Attend(y, A)
enanrrorivite = A question(z,y, A) enety;

UniqueApproachPlates =

A current(appr_plate[a))
A current(appr_plate[b]) = (a #b)
A data_inconsist(appr _plate[a], appr _plate[b])

Figure 21.6: Module Landing Norms (Part 2)

21.2 Procedures 329

| module Landing_Norms (continued)

AttendNavaids = navigate(appr _plate[APT], CRW)
= V2 € Navaids[appr_plate[APT]] : Attend(CRW,)

. current_alt) — (desired_alt[APPR])| > acceptable_deviation
Deviation_Breakoff = i(CRW_brea)koﬁ((CRW) [DI P)

DEFINITION

LNSpec = A ProceduralDef1
A GeneralSafetyRule
A Landing_Procedures
A Unique_APT_Rule
A Landing_Criterion
A Landing_Rule
A ILS— APPR_Rule
A ILS— LandingRule
A ILS— AltProperty
A Normal— Progress
A CallAttentionToErrorRule
A AttendErrorRule
A UniqueApproachRule
A AttendNavaids
A Deviation_Breakoff

Figure 21.7: Module Landing Norms (Part 3)

330 Procedure Specifications in TLA+

| module Landing_Specs

DECLARATIONS
extends RealTimeTheorems
extends Landing_Defs
extends Landing_Azioms
extends Landing_Norms
CONSTANTS ATC, CRW,APT, APPRVARIABLE tfc

Definition
all — variables = (some_apt, current_alt, acceptable_deviation, tfc)
|

PREDICATES

Odistress_decl(CRW)
Ourgency-decl(CRW)
O-flightpath_acceptable(CRW)
endanger (CRW , trf)
—cleared_to_land(ATC, CRW ,APT)
—wisibility _acceptable(CRW)

>

landing_interrupt(CRW , ATC, APT)

<LK KKK KL

Init = A (AC)near(APT)

A —distress_decl(CRW)
A —urgency_decl(CRW)
A flightpath_acceptable(CRW)
A —endanger(CRW , tfc)
A —cleared_to_land(ATC, CRW, APT)
A —landing_accepted(CRW)

| A visibility_acceptable(CRW)

ACTIONS

Accept_flightpath(CRW) = A —flightpath_acceptable(CRW)
A flightpath_acceptable(CRW)'
A UNCHANGED (AC)near(APT)
A UNCHANGED (AC)in_landing_phase
A UNCHANGED cleared_to_land(ATC, CRW ,APT)
A UNCHANGED distress_decl(CRW)
A UNCHANGED landing_accepted(CRW)
A UNCHANGED urgency_decl(CRW)
A UNCHANGED endanger(CRW , trf)
A UNCHANGED wisibility_acceptable(CRW)

Figure 21.8: Module Landing_Specs (Part 1)

21.2 Procedures 331

module Landing_Specs (continued)

A

Accept_landing(ATC, CRW ,APT) = A wvisibility_acceptable(CRW)
A —distress_decl(CRW)
A —urgency_decl(CRW)
A flightpath_acceptable(CRW)
A —endanger(CRW , tfc)
A cleared_to_land(ATC, CRW , APT)
A =landing_accepted(CRW)
A landing_accepted(CRW)’
A =(AC)in_landing_phase
A (AC)in_landing_phase’
A UNCHANGED (AC)near(APT)
A UNCHANGED cleared _to_land(ATC, CRW , APT)
A UNCHANGED flightpath_acceptable(CRW)
A UNCHANGED distress_decl(CRW)
A UNCHANGED urgency_decl(CRW)
A UNCHANGED endanger(CRW , tfc)
A UNCHANGED wisibility_acceptable(CRW)
Cleared to_land(ATC, CRW ,APT) = A =cleared_to_land(ATC, CRW , APT)
A cleared_to_land(ATC, CRW ,APT)’
UNCHANGED (AC)near(APT)
UNCHANGED (AC)in_landing_phase
UNCHANGED flightpath_acceptable(CRW)
UNCHANGED distress_decl(CRW)
UNCHANGED landing_accepted(CRW)
UNCHANGED urgency-decl(CRW)
A UNCHANGED endanger(CRW , tfc)
A UNCHANGED wisibility_acceptable(CRW)
Decl_distress(CRW) = A —distress_decl(CRW)
A distress_decl(CRW)'
A UNCHANGED (AC)near(APT)
A UNCHANGED (ACQ)in_landing_phase
A UNCHANGED flightpath_acceptable(CRW)
A UNCHANGED cleared _to_land(ATC, CRW , APT)
A UNCHANGED landing_accepted(CRW)
A UNCHANGED urgency_decl(CRW)
A UNCHANGED endanger(CRW , tfc)
A UNCHANGED wisibility_acceptable(CRW)

>>>>> >

Figure 21.9: Module Landing_Specs (Part 2)

332 Procedure Specifications in TLA+

module Landing_Specs (continued)

Decl_urgency(CRW) = A —urgency_decl(CRW)
A urgency_decl(CRW)'
A UNCHANGED (AC)near(APT)
A UNCHANGED (AC)in_landing_phase
A UNCHANGED flightpath_acceptable(CRW)
A UNCHANGED cleared_to_land(ATC, CRW,APT)
A UNCHANGED distress_decl(CRW)
A UNCHANGED landing_accepted(CRW)
A UNCHANGED endanger(CRW , tfc)
A UNCHANGED wvisibility_acceptable(CRW)
Consider_danger(CRW) = A —endanger(CRW , tfc)
A endanger(CRW , tfc)’
A UNCHANGED (AC)near(APT)
A UNCHANGED (AC)in_landing_phase
A UNCHANGED flightpath_acceptable(CRW)
A UNCHANGED cleared _to_land(ATC, CRW,APT)
A UNCHANGED distress_decl(CRW)
A UNCHANGED landing_accepted(CRW')
A UNCHANGED urgency_decl(CRW)
A UNCHANGED wisibility_acceptable(CRW)

CRW _breakoff (CRW) = A landing_accepted(CRW)
A (AC)in_landing_phase
A =(AC)in_landing_phase’
A V Decl_distress(CRW)
V Decl_urgency(CRW)
V = Accept_flightpath(CRW)
V Consider_danger(CRW)
V —wisibility -acceptable(CRW)
A UNCHANGED (AC)near(APT)
A UNCHANGED cleared_to_land(ATC, CRW , APT)
A UNCHANGED landing_accepted(CRW)

Figure 21.10: Module Landing_Specs (Part 3)

21.2 Procedures 333

| module Landing_Specs (continued)

ATC _breakoff (ATC, CRW,APT) = A cleared_to_land(ATC, CRW, APT)
A —cleared _to_land(ATC, CRW, APT)’
A UNCHANGED (AC)near(APT)
A UNCHANGED (AC)in_landing_phase
A UNCHANGED flightpath_acceptable(CRW)
A UNCHANGED distress_decl(CRW)
A UNCHANGED landing_accepted(CRW)
A UNCHANGED urgency-decl(CRW)
A UNCHANGED endanger(CRW , tfc)
A UNCHANGED wisibility_acceptable(CRW)

DEFINITION
Rules = A ProceduralDef1
N APT/ATC_Id_Rule
A Landing_Procedures
A Clearance_Rule
A Unique_APT _Rule
A Unique_Approach — Type_Rule
A Landing_Criterion
A Landing_Rule
A Acceptance_Rule
A LandingSafetyRule
A ILS—APPR_Rule
A ILS— LandingRule
A ILS— AltProperty
SomeAction = V Accept_flightpath(CRW)
V Accept_landing(CRW)
V Cleared_to_land(ATC, CRW, APT)
V Decl_distress(CRW)
V Decl_urgency(CRW)
V Consider_danger(CRW)
vV CRW _breakoff (CRW)
V ATC _breakoff (ATC)
Spec = A Init
A Rules
A D[SomeACtion]all-’uariables
A WEF[Cleared_to_land(ATC, CRW , APT))ali_variabies
A WF[Accept landing(CRW)] au_variables

Figure 21.11: Module Landing_Specs (Part 4)

334

Procedure Specifications in TLA+

Figure 21.12: State Predicates from Specifications of Landing Procedures

| state predicate classification |
(ac)in_landing_phase system
(ac)in_area(atc) system
(ac)lands_at(apt) system
(ac)near(apt) system
appr _plate|apt] system
at_MDA system
below_DH system
below MDA system
cleared_to_land(crw, atc, apt) performative
current(a) system
det_destAPT (ac) system
distress_decl(crw) performative
endanger(crw, tfc) environment /performative
fdata(ac)|field] system
flightpath_acceptable(crw) environment /performative
intermediateATC (ac, aptl, apt2) system
ILS _approach(ac, apt) system
landing system
landing_accepted (crw) performative
landing_interrupt (disjunct of predicates)
LOC (a) system
navigate(a, T) system
NP _approach(ac, apt) system
position(ac) system
question(a, y, a) performative
responsible_atc(apt) system
urgency _decl(crw) performative
visibility _acceptable(crw) environment /performative
visual_contact(crw, apt) system

21.2 Procedures 335

determine which the En-Route ATCs shall be (usually the flight plan contains
information such as AC call sign, AC type, transponder code, assigned altitude,
destination airport and route of flight [Nol94, p. 412]).

We do not claim that these specifications are complete. The definitions we
have presented were sufficient for our analysis. This may be called lazy speci-
fication: we specify all we need for the current purposes. Ultimately a greedy
specification is needed: a specification of all standard procedures and aviation
regulations. We think this is feasible along the lines of what we have done here.
It would be a lot of work, and it wouldn'’t serve the current purposes to attempt
it here.

336 Procedure Specifications in TLA+

module SOP_Specs

DECLARATIONS
extends Naturals, Sequences
extends ATCcomm, ATCcomm_history

extends Landing_Specs
CONSTANTS AC,ATC, APT, destATC, nextATC, tfc

ASSUMPTIONS
ASSUME VY ac, (ac)in_area(ATC) : 31 msg € storage(ATC) : msg[l] = fid(ac)

DEFINITIONS
RespDestATC_Determination_Rule
(det_destATC(AC) = responsible_atc(det_destAPT(AC)))
(

DetermineDestinationProcedure = (det_destAPT(AC) = fdata(AC)[destAPT])

A

nextATC(AC) = V det_destATC(AC)
V intermediate ATC(AC, det_destAPT(AC), destAPT(AC))

(AC)in_area(ATC) = position(AC) € region(ATC)

false_FI(ATC,AC) = (det.destAPT(AC) # destAPT(AC))

Inter _ATC_Handoff (z,y, AC) =

(AC)in_area(z)
(AC)in_area(y)
nextATC(AC) =y
o (A —(AC)in_area(x))
AN (AC)in_area(y)
V ATCcomm_history. Handoff correct(z, y, id(AC))
(V ATCcomm_history. Handoff incorrect (2, y, fid(AC)))

> > > >

Figure 21.13: Module SOP_Specs (Part 1)

21.2 Procedures 337

module SOP_Specs (continued)

A

EnRouteProcessing(ATC,AC) =
AN (AC)in_area(ATC)
A det_destAPT(AC) = fdata(AC)[destAPT]
AN ATC # det_destATC(AC)
= OlInter ATC _Handoff (ATC, nextATC(AC), AC)

ATC— Responsibility—Rule = (AC)in_area(ATC) = EnRouteProcessing(ATC,AC)

I
DEFINITION
Spec = A ATC— Responsibility— Rule
A DetermineDestinationProcedure
A EnRouteProcessing(ATC, AC)
A Inter ATC _Handoff (z,y, AC)

Figure 21.14: Module SOP_Specs (Part 2)

338 Procedure Specifications in TLA+

